We present a new L1-distance-based k-means clustering algorithm to address the challenge of clustering high-dimensional proportional vectors. The new algorithm explicitly incorpor...
Bonnie K. Ray, Hisashi Kashima, Jianying Hu, Monin...
Abstract--This paper describes an interactive tool for constrained clustering that helps users to select effective constraints efficiently during the constrained clustering process...
Abstract— We develop a general framework for MAP estimation in discrete and Gaussian graphical models using Lagrangian relaxation techniques. The key idea is to reformulate an in...
Jason K. Johnson, Dmitry M. Malioutov, Alan S. Wil...
Background: Gene clustering for annotating gene functions is one of the fundamental issues in bioinformatics. The best clustering solution is often regularized by multiple constra...
Jia Zeng, Shanfeng Zhu, Alan Wee-Chung Liew, Hong ...
This paper presents a system for graph clustering where users can visualize the clustering and give "hints" that help a computing method to find better solutions. Hints ...