Sciweavers

33 search results - page 3 / 7
» Kernel-based distance metric learning for microarray data cl...
Sort
View
105
Voted
ICMLA
2010
14 years 8 months ago
Smoothing Gene Expression Using Biological Networks
Gene expression (microarray) data have been used widely in bioinformatics. The expression data of a large number of genes from small numbers of subjects are used to identify inform...
Yue Fan, Mark A. Kon, Shinuk Kim, Charles DeLisi
86
Voted
COLT
2010
Springer
14 years 8 months ago
Efficient Classification for Metric Data
Recent advances in large-margin classification of data residing in general metric spaces (rather than Hilbert spaces) enable classification under various natural metrics, such as ...
Lee-Ad Gottlieb, Leonid Kontorovich, Robert Krauth...
ICML
2007
IEEE
15 years 11 months ago
Dirichlet aggregation: unsupervised learning towards an optimal metric for proportional data
Proportional data (normalized histograms) have been frequently occurring in various areas, and they could be mathematically abstracted as points residing in a geometric simplex. A...
Hua-Yan Wang, Hongbin Zha, Hong Qin
KDD
2008
ACM
172views Data Mining» more  KDD 2008»
15 years 10 months ago
Structured metric learning for high dimensional problems
The success of popular algorithms such as k-means clustering or nearest neighbor searches depend on the assumption that the underlying distance functions reflect domain-specific n...
Jason V. Davis, Inderjit S. Dhillon
82
Voted
ICML
2007
IEEE
15 years 11 months ago
Information-theoretic metric learning
In this paper, we present an information-theoretic approach to learning a Mahalanobis distance function. We formulate the problem as that of minimizing the differential relative e...
Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit ...