Sciweavers

340 search results - page 5 / 68
» Kernelized value function approximation for reinforcement le...
Sort
View
ATAL
2005
Springer
15 years 3 months ago
Improving reinforcement learning function approximators via neuroevolution
Reinforcement learning problems are commonly tackled with temporal difference methods, which use dynamic programming and statistical sampling to estimate the long-term value of ta...
Shimon Whiteson
IWANN
1999
Springer
15 years 1 months ago
Using Temporal Neighborhoods to Adapt Function Approximators in Reinforcement Learning
To avoid the curse of dimensionality, function approximators are used in reinforcement learning to learn value functions for individual states. In order to make better use of comp...
R. Matthew Kretchmar, Charles W. Anderson
69
Voted
IJON
2006
90views more  IJON 2006»
14 years 9 months ago
Reinforcement learning of a simple control task using the spike response model
In this work, we propose a variation of a direct reinforcement learning algorithm, suitable for usage with spiking neurons based on the spike response model (SRM). The SRM is a bi...
Murilo Saraiva de Queiroz, Roberto Coelho de Berr&...
EWRL
2008
14 years 11 months ago
Bayesian Reward Filtering
A wide variety of function approximation schemes have been applied to reinforcement learning. However, Bayesian filtering approaches, which have been shown efficient in other field...
Matthieu Geist, Olivier Pietquin, Gabriel Fricout
IAT
2003
IEEE
15 years 2 months ago
Asymmetric Multiagent Reinforcement Learning
A gradient-based method for both symmetric and asymmetric multiagent reinforcement learning is introduced in this paper. Symmetric multiagent reinforcement learning addresses the ...
Ville Könönen