Sciweavers

340 search results - page 7 / 68
» Kernelized value function approximation for reinforcement le...
Sort
View
83
Voted
ILP
2003
Springer
15 years 2 months ago
Graph Kernels and Gaussian Processes for Relational Reinforcement Learning
RRL is a relational reinforcement learning system based on Q-learning in relational state-action spaces. It aims to enable agents to learn how to act in an environment that has no ...
Thomas Gärtner, Kurt Driessens, Jan Ramon
ICMLA
2008
14 years 11 months ago
Basis Function Construction in Reinforcement Learning Using Cascade-Correlation Learning Architecture
In reinforcement learning, it is a common practice to map the state(-action) space to a different one using basis functions. This transformation aims to represent the input data i...
Sertan Girgin, Philippe Preux
NIPS
2008
14 years 11 months ago
Regularized Policy Iteration
In this paper we consider approximate policy-iteration-based reinforcement learning algorithms. In order to implement a flexible function approximation scheme we propose the use o...
Amir Massoud Farahmand, Mohammad Ghavamzadeh, Csab...
144
Voted

Publication
334views
15 years 6 months ago
Rollout Sampling Approximate Policy Iteration
Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schem...
Christos Dimitrakakis, Michail G. Lagoudakis
ICML
2001
IEEE
15 years 10 months ago
Off-Policy Temporal Difference Learning with Function Approximation
We introduce the first algorithm for off-policy temporal-difference learning that is stable with linear function approximation. Off-policy learning is of interest because it forms...
Doina Precup, Richard S. Sutton, Sanjoy Dasgupta