Many applications of supervised learning require good generalization from limited labeled data. In the Bayesian setting, we can try to achieve this goal by using an informative pr...
We describe an application of inductive logic programming to transfer learning. Transfer learning is the use of knowledge learned in a source task to improve learning in a related ...
Lisa Torrey, Jude W. Shavlik, Trevor Walker, Richa...
Abstract. Building visual recognition models that adapt across different domains is a challenging task for computer vision. While feature-learning machines in the form of hierarchi...
Amr Ahmed, Kai Yu, Wei Xu, Yihong Gong, Eric P. Xi...
In several domains it is common to have data from different, but closely related problems. For instance, in manufacturing, many products follow the same industrial process but with...
Roger Luis, Luis Enrique Sucar, Eduardo F. Morales
Traditional machine learning makes a basic assumption: the training and test data should be under the same distribution. However, in many cases, this identicaldistribution assumpt...