Many machine-learning algorithms learn rules of behavior from individual end users, such as taskoriented desktop organizers and handwriting recognizers. These rules form a “prog...
Todd Kulesza, Simone Stumpf, Margaret M. Burnett, ...
The work presented in this paper explores a supervised method for learning a probabilistic model of a lexicon of VerbNet classes. We intend for the probabilistic model to provide ...
This paper presents a new approach to selecting the initial seed set using stratified sampling strategy in bootstrapping-based semi-supervised learning for semantic relation class...
We study the problem of learning a group of principal tasks using a group of auxiliary tasks, unrelated to the principal ones. In many applications, joint learning of unrelated ta...
Bernardino Romera-Paredes, Andreas Argyriou, Nadia...
In this paper, we adapt a statistical learning approach, inspired by automated topic segmentation techniques in speech-recognized documents to the challenging protein segmentation ...
Betty Yee Man Cheng, Jaime G. Carbonell, Judith Kl...