In this paper, we investigate a new machine learning framework called Online Transfer Learning (OTL) that aims to transfer knowledge from some source domain to an online learning ...
This paper has no novel learning or statistics: it is concerned with making a wide class of preexisting statistics and learning algorithms computationally tractable when faced wit...
When comparing inductive logic programming (ILP) and attribute-value learning techniques, there is a trade-off between expressive power and efficiency. Inductive logic programming ...
Hendrik Blockeel, Luc De Raedt, Nico Jacobs, Bart ...
One of the key problems in reinforcement learning is balancing exploration and exploitation. Another is learning and acting in large or even continuous Markov decision processes (...
Lihong Li, Michael L. Littman, Christopher R. Mans...
Kernel methods have been shown to be very effective for applications requiring the modeling of structured objects. However kernels for structures usually are too computational dem...
Fabio Aiolli, Giovanni Da San Martino, Alessandro ...