This paper shows how a text classifier's need for labeled training documents can be reduced by taking advantage of a large pool of unlabeled documents. We modify the Query-by...
In this article, we extend a local prototype-based learning model by active learning, which gives the learner the capability to select training samples and thereby increase speed a...
Frank-Michael Schleif, Barbara Hammer, Thomas Vill...
Detecting unknown worms is a challenging task. Extant solutions, such as anti-virus tools, rely mainly on prior explicit knowledge of specific worm signatures. As a result, after t...
Robert Moskovitch, Nir Nissim, Dima Stopel, Clint ...
In this article, we extend a local prototype-based learning model by active learning, which gives the learner the capability to select training samples during the model adaptation...
Frank-Michael Schleif, Barbara Hammer, Thomas Vill...
In many complex machine learning applications there is a need to learn multiple interdependent output variables, where knowledge of these interdependencies can be exploited to impr...