We describe an ensemble learning approach that accurately learns from data that has been partitioned according to the arbitrary spatial requirements of a large-scale simulation whe...
Robert E. Banfield, Lawrence O. Hall, Kevin W. Bow...
Methods for learning Bayesian networks can discover dependency structure between observed variables. Although these methods are useful in many applications, they run into computat...
Eran Segal, Dana Pe'er, Aviv Regev, Daphne Koller,...
Gene network reconstruction is a multidisciplinary research area involving data mining, machine learning, statistics, ontologies and others. Reconstructed gene network allows us t...
Understanding human emotions is one of the necessary skills for the computer to interact intelligently with human users. The most expressive way humans display emotions is through...
Ira Cohen, Nicu Sebe, Fabio Gagliardi Cozman, Marc...
This article deals with the identification of gene regulatory networks from experimental data using a statistical machine learning approach. A stochastic model of gene interactio...