Sciweavers

321 search results - page 9 / 65
» Learning Bayesian Networks with Local Structure
Sort
View
UAI
2003
15 years 1 months ago
On Local Optima in Learning Bayesian Networks
This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that i...
Jens D. Nielsen, Tomás Kocka, José M...
109
Voted
AIIA
2003
Springer
15 years 4 months ago
Improving the SLA Algorithm Using Association Rules
A bayesian network is an appropriate tool for working with uncertainty and probability, that are typical of real-life applications. In literature we find different approaches for b...
Evelina Lamma, Fabrizio Riguzzi, Andrea Stambazzi,...
91
Voted
FLAIRS
2006
15 years 1 months ago
Decomposing Local Probability Distributions in Bayesian Networks for Improved Inference and Parameter Learning
A major difficulty in building Bayesian network models is the size of conditional probability tables, which grow exponentially in the number of parents. One way of dealing with th...
Adam Zagorecki, Mark Voortman, Marek J. Druzdzel
NN
2002
Springer
136views Neural Networks» more  NN 2002»
14 years 11 months ago
Bayesian model search for mixture models based on optimizing variational bounds
When learning a mixture model, we suffer from the local optima and model structure determination problems. In this paper, we present a method for simultaneously solving these prob...
Naonori Ueda, Zoubin Ghahramani
104
Voted
ICML
2006
IEEE
16 years 13 days ago
Full Bayesian network classifiers
The structure of a Bayesian network (BN) encodes variable independence. Learning the structure of a BN, however, is typically of high computational complexity. In this paper, we e...
Jiang Su, Harry Zhang