We study the problem of learning an optimal Bayesian network in a constrained search space; skeletons are compelled to be subgraphs of a given undirected graph called the super-st...
Kaname Kojima, Eric Perrier, Seiya Imoto, Satoru M...
Combining classifier methods have shown their effectiveness in a number of applications. Nonetheless, using simultaneously multiple classifiers may result in some cases in a reduc...
Claudio De Stefano, Francesco Fontanella, Alessand...
We introduce a polynomial-time algorithm to learn Bayesian networks whose structure is restricted to nodes with in-degree at most k and to edges consistent with the optimal branch...
In this paper, we provide new complexity results for algorithms that learn discrete-variable Bayesian networks from data. Our results apply whenever the learning algorithm uses a ...
David Maxwell Chickering, Christopher Meek, David ...
Many classes of images have the characteristics of sparse structuring of statistical dependency and the presence of conditional independencies among various groups of variables. S...