Sciweavers

71 search results - page 12 / 15
» Learning Gaussian Conditional Random Fields for Low-Level Vi...
Sort
View
DAGM
2011
Springer
13 years 9 months ago
Putting MAP Back on the Map
Conditional Random Fields (CRFs) are popular models in computer vision for solving labeling problems such as image denoising. This paper tackles the rarely addressed but important ...
Patrick Pletscher, Sebastian Nowozin, Pushmeet Koh...
KDD
2007
ACM
132views Data Mining» more  KDD 2007»
15 years 10 months ago
A scalable modular convex solver for regularized risk minimization
A wide variety of machine learning problems can be described as minimizing a regularized risk functional, with different algorithms using different notions of risk and different r...
Choon Hui Teo, Alex J. Smola, S. V. N. Vishwanatha...
ECCV
2004
Springer
15 years 11 months ago
Interactive Image Segmentation Using an Adaptive GMMRF Model
The problem of interactive foreground/background segmentation in still images is of great practical importance in image editing. The state of the art in interactive segmentation is...
Andrew Blake, Carsten Rother, M. Brown, Patrick P&...
NIPS
2008
14 years 11 months ago
Natural Image Denoising with Convolutional Networks
We present an approach to low-level vision that combines two main ideas: the use of convolutional networks as an image processing architecture and an unsupervised learning procedu...
Viren Jain, H. Sebastian Seung
NIPS
2008
14 years 11 months ago
Non-stationary dynamic Bayesian networks
Abstract: Structure learning of dynamic Bayesian networks provide a principled mechanism for identifying conditional dependencies in time-series data. This learning procedure assum...
Joshua W. Robinson, Alexander J. Hartemink