Sciweavers

142 search results - page 1 / 29
» Learning Graphical Model Structure Using L1-Regularization P...
Sort
View
AAAI
2007
15 years 22 days ago
Learning Graphical Model Structure Using L1-Regularization Paths
Sparsity-promoting L1-regularization has recently been succesfully used to learn the structure of undirected graphical models. In this paper, we apply this technique to learn the ...
Mark W. Schmidt, Alexandru Niculescu-Mizil, Kevin ...
ICMLA
2009
14 years 8 months ago
ECON: A Kernel Basis Pursuit Algorithm with Automatic Feature Parameter Tuning, and its Application to Photometric Solids Approx
This paper introduces a new algorithm, namely the EquiCorrelation Network (ECON), to perform supervised classification, and regression. ECON is a kernelized LARS-like algorithm, b...
Manuel Loth, Philippe Preux, Samuel Delepoulle, Ch...
ICML
2009
IEEE
15 years 11 months ago
Learning structurally consistent undirected probabilistic graphical models
In many real-world domains, undirected graphical models such as Markov random fields provide a more natural representation of the dependency structure than directed graphical mode...
Sushmita Roy, Terran Lane, Margaret Werner-Washbur...
JMLR
2010
202views more  JMLR 2010»
14 years 5 months ago
Learning the Structure of Deep Sparse Graphical Models
Deep belief networks are a powerful way to model complex probability distributions. However, it is difficult to learn the structure of a belief network, particularly one with hidd...
Ryan Prescott Adams, Hanna M. Wallach, Zoubin Ghah...
CORR
2010
Springer
130views Education» more  CORR 2010»
14 years 10 months ago
Approximated Structured Prediction for Learning Large Scale Graphical Models
In this paper we propose an approximated structured prediction framework for large scale graphical models and derive message-passing algorithms for learning their parameters effic...
Tamir Hazan, Raquel Urtasun