This paper introduces a Bayesian algorithm for constructing predictive models from data that are optimized to predict a target variable well for a particular instance. This algori...
We describe a set of supervised machine learning experiments centering on the construction of statistical models of WH-questions. These models, which are built from shallow lingui...
Using a combination of machine learning probabilistic tools, we have shown that some chemistry students fail to develop productive problem solving strategies through practice alon...
Ron Stevens, Amy Soller, Alessandra Giordani, Luca...
In this paper, we introduce the semantic network model (SNM), a generalization of the hidden Markov model (HMM) that uses factorization of state transition probabilities to reduce...
Stjepan Rajko, Gang Qian, Todd Ingalls, Jodi James
Abstract. Machine learning can be utilized to build models that predict the runtime of search algorithms for hard combinatorial problems. Such empirical hardness models have previo...
Frank Hutter, Youssef Hamadi, Holger H. Hoos, Kevi...