The paper is concerned with learning to rank, which is to construct a model or a function for ranking objects. Learning to rank is useful for document retrieval, collaborative fil...
Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, Han...
In information retrieval, relevance of documents with respect to queries is usually judged by humans, and used in evaluation and/or learning of ranking functions. Previous work ha...
Jingfang Xu, Chuanliang Chen, Gu Xu, Hang Li, Elbi...
The paper is concerned with applying learning to rank to document retrieval. Ranking SVM is a typical method of learning to rank. We point out that there are two factors one must ...
Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Hua...
This paper explores two classes of model adaptation methods for Web search ranking: Model Interpolation and error-driven learning approaches based on a boosting algorithm. The res...
Jianfeng Gao, Qiang Wu, Chris Burges, Krysta Marie...
This paper introduces a novel machine learning model called multiple instance ranking (MIRank) that enables ranking to be performed in a multiple instance learning setting. The mo...
Charles Bergeron, Jed Zaretzki, Curt M. Breneman, ...