The issue of data mining in time series databases is of utmost importance for many practical applications and has attracted a lot of research in the past years. In this paper, we ...
To predict the 100 missing values from a time series of 5000 data points, given for the IJCNN 2004 time series prediction competition, recurrent neural networks (RNNs) are trained...
Xindi Cai, Nian Zhang, Ganesh K. Venayagamoorthy, ...
Abstract. We present a method for applying machine learning algorithms to the automatic classification of astronomy star surveys using time series of star brightness. Currently su...
Gabriel Wachman, Roni Khardon, Pavlos Protopapas, ...
We introduce a method to discover optimal local patterns, which concisely describe the main trends in a time series. Our approach examines the time series at multiple time scales ...
Random Forests were introduced by Breiman for feature (variable) selection and improved predictions for decision tree models. The resulting model is often superior to AdaBoost and ...
Long Han, Mark J. Embrechts, Boleslaw K. Szymanski...