Sciweavers

312 search results - page 15 / 63
» Learning Partially Observable Deterministic Action Models
Sort
View
95
Voted
ATAL
2010
Springer
14 years 10 months ago
Closing the learning-planning loop with predictive state representations
A central problem in artificial intelligence is to choose actions to maximize reward in a partially observable, uncertain environment. To do so, we must learn an accurate model of ...
Byron Boots, Sajid M. Siddiqi, Geoffrey J. Gordon
UAI
2001
14 years 11 months ago
The Optimal Reward Baseline for Gradient-Based Reinforcement Learning
There exist a number of reinforcement learning algorithms which learn by climbing the gradient of expected reward. Their long-run convergence has been proved, even in partially ob...
Lex Weaver, Nigel Tao
UAI
2008
14 years 11 months ago
Sampling First Order Logical Particles
Approximate inference in dynamic systems is the problem of estimating the state of the system given a sequence of actions and partial observations. High precision estimation is fu...
Hannaneh Hajishirzi, Eyal Amir
COLT
2007
Springer
15 years 3 months ago
Observational Learning in Random Networks
In the standard model of observational learning, n agents sequentially decide between two alternatives a or b, one of which is objectively superior. Their choice is based on a stoc...
Julian Lorenz, Martin Marciniszyn, Angelika Steger
CVPR
2008
IEEE
15 years 11 months ago
Context and observation driven latent variable model for human pose estimation
Current approaches to pose estimation and tracking can be classified into two categories: generative and discriminative. While generative approaches can accurately determine human...
Abhinav Gupta, Trista Chen, Francine Chen, Don Kim...