Sciweavers

50 search results - page 3 / 10
» Learning Policies with External Memory
Sort
View
ICANN
2010
Springer
15 years 1 months ago
Multi-Dimensional Deep Memory Atari-Go Players for Parameter Exploring Policy Gradients
Abstract. Developing superior artificial board-game players is a widelystudied area of Artificial Intelligence. Among the most challenging games is the Asian game of Go, which, des...
Mandy Grüttner, Frank Sehnke, Tom Schaul, J&u...
ICANN
2007
Springer
15 years 7 months ago
Solving Deep Memory POMDPs with Recurrent Policy Gradients
Abstract. This paper presents Recurrent Policy Gradients, a modelfree reinforcement learning (RL) method creating limited-memory stochastic policies for partially observable Markov...
Daan Wierstra, Alexander Förster, Jan Peters,...
NCI
2004
185views Neural Networks» more  NCI 2004»
15 years 2 months ago
Hierarchical reinforcement learning with subpolicies specializing for learned subgoals
This paper describes a method for hierarchical reinforcement learning in which high-level policies automatically discover subgoals, and low-level policies learn to specialize for ...
Bram Bakker, Jürgen Schmidhuber
ECML
2007
Springer
15 years 7 months ago
Policy Gradient Critics
We present Policy Gradient Actor-Critic (PGAC), a new model-free Reinforcement Learning (RL) method for creating limited-memory stochastic policies for Partially Observable Markov ...
Daan Wierstra, Jürgen Schmidhuber
ECML
2005
Springer
15 years 6 months ago
Model-Based Online Learning of POMDPs
Abstract. Learning to act in an unknown partially observable domain is a difficult variant of the reinforcement learning paradigm. Research in the area has focused on model-free m...
Guy Shani, Ronen I. Brafman, Solomon Eyal Shimony