In sequence modeling, we often wish to represent complex interaction between labels, such as when performing multiple, cascaded labeling tasks on the same sequence, or when longra...
Charles A. Sutton, Khashayar Rohanimanesh, Andrew ...
Physical domains are notoriously hard to model completely and correctly, especially to capture the dynamics of the environment. Moreover, since environments change, it is even mor...
We present a probabilistic model-based framework for distributed learning that takes into account privacy restrictions and is applicable to scenarios where the different sites ha...
Discriminative methods for visual object category recognition are typically non-probabilistic, predicting class labels but not directly providing an estimate of uncertainty. Gauss...
Ashish Kapoor, Kristen Grauman, Raquel Urtasun, Tr...
We present a new approach for personalizing Web search results to a specific user. Ranking functions for Web search engines are typically trained by machine learning algorithms u...
David Sontag, Kevyn Collins-Thompson, Paul N. Benn...