Sciweavers

1018 search results - page 86 / 204
» Learning Probabilistic Models of Contours
Sort
View
ICML
2010
IEEE
14 years 11 months ago
Label Ranking Methods based on the Plackett-Luce Model
This paper introduces two new methods for label ranking based on a probabilistic model of ranking data, called the Plackett-Luce model. The idea of the first method is to use the ...
Weiwei Cheng, Krzysztof Dembczynski, Eyke Hül...
NLPRS
2001
Springer
15 years 2 months ago
A Maximum Entropy Tagger with Unsupervised Hidden Markov Models
We describe a new tagging model where the states of a hidden Markov model (HMM) estimated by unsupervised learning are incorporated as the features in a maximum entropy model. Our...
Jun'ichi Kazama, Yusuke Miyao, Jun-ichi Tsujii
ECML
2006
Springer
15 years 1 months ago
PAC-Learning of Markov Models with Hidden State
The standard approach for learning Markov Models with Hidden State uses the Expectation-Maximization framework. While this approach had a significant impact on several practical ap...
Ricard Gavaldà, Philipp W. Keller, Joelle P...
CORR
2011
Springer
199views Education» more  CORR 2011»
14 years 5 months ago
From Machine Learning to Machine Reasoning
A plausible definition of "reasoning" could be "algebraically manipulating previously acquired knowledge in order to answer a new question". This definition co...
Léon Bottou
ECCV
2008
Springer
15 years 12 months ago
Constrained Maximum Likelihood Learning of Bayesian Networks for Facial Action Recognition
Probabilistic graphical models such as Bayesian Networks have been increasingly applied to many computer vision problems. Accuracy of inferences in such models depends on the quali...
Cassio Polpo de Campos, Yan Tong, Qiang Ji