While much work on learning in planning focused on learning domain physics (i.e., action models), and search control knowledge, little attention has been paid towards learning use...
Nan Li, William Cushing, Subbarao Kambhampati, Sun...
We present a probabilistic parsing model for German trained on the Negra treebank. We observe that existing lexicalized parsing models using head-head dependencies, while successf...
We consider the problem of modeling the content structure of texts within a specific domain, in terms of the topics the texts address and the order in which these topics appear. W...
A serious problem in learning probabilistic models is the presence of hidden variables. These variables are not observed, yet interact with several of the observed variables. As s...
Gal Elidan, Noam Lotner, Nir Friedman, Daphne Koll...
Abstract. We consider the problem of training discriminative structured output predictors, such as conditional random fields (CRFs) and structured support vector machines (SSVMs)....
Patrick Pletscher, Cheng Soon Ong, Joachim M. Buhm...