This paper studies evolutionary clustering, which is a recently hot topic with many important applications, noticeably in social network analysis. In this paper, based on the rece...
Tianbing Xu, Zhongfei (Mark) Zhang, Philip S. Yu, ...
We describe a novel simple and highly scalable semi-supervised method called Word-Class Distribution Learning (WCDL), and apply it the task of information extraction (IE) by utili...
Yanjun Qi, Ronan Collobert, Pavel Kuksa, Koray Kav...
This paper explores what kind of user simulation model is suitable for developing a training corpus for using Markov Decision Processes (MDPs) to automatically learn dialog strate...
The goal of robot learning from demonstration is to have a robot learn from watching a demonstration of the task to be performed. In our approach to learning from demonstration th...
From conventional wisdom and empirical studies of annotated data, it has been shown that visual statistics such as object frequencies and segment sizes follow power law distributi...
Alex Shyr, Trevor Darrell, Michael Jordan, Raquel ...