Sciweavers

98 search results - page 7 / 20
» Learning Relational Features with Backward Random Walks
Sort
View
CIKM
2009
Springer
15 years 8 months ago
Feature selection for ranking using boosted trees
Modern search engines have to be fast to satisfy users, so there are hard back-end latency requirements. The set of features useful for search ranking functions, though, continues...
Feng Pan, Tim Converse, David Ahn, Franco Salvetti...
NIPS
2003
15 years 2 months ago
Approximate Policy Iteration with a Policy Language Bias
We study an approach to policy selection for large relational Markov Decision Processes (MDPs). We consider a variant of approximate policy iteration (API) that replaces the usual...
Alan Fern, Sung Wook Yoon, Robert Givan
ECCC
2006
96views more  ECCC 2006»
15 years 1 months ago
When Does Greedy Learning of Relevant Features Succeed? --- A Fourier-based Characterization ---
Detecting the relevant attributes of an unknown target concept is an important and well studied problem in algorithmic learning. Simple greedy strategies have been proposed that s...
Jan Arpe, Rüdiger Reischuk
CVPR
2005
IEEE
16 years 3 months ago
Discriminative Learning of Markov Random Fields for Segmentation of 3D Scan Data
We address the problem of segmenting 3D scan data into objects or object classes. Our segmentation framework is based on a subclass of Markov Random Fields (MRFs) which support ef...
Dragomir Anguelov, Benjamin Taskar, Vassil Chatalb...
IJCNN
2008
IEEE
15 years 7 months ago
Learning to select relevant perspective in a dynamic environment
— When an agent observes its environment, there are two important characteristics of the perceived information. One is the relevance of information and the other is redundancy. T...
Zhihui Luo, David A. Bell, Barry McCollum, Qingxia...