Sciweavers

993 search results - page 103 / 199
» Learning RoboCup-Keepaway with Kernels
Sort
View
NIPS
2004
14 years 11 months ago
Learning Gaussian Process Kernels via Hierarchical Bayes
We present a novel method for learning with Gaussian process regression in a hierarchical Bayesian framework. In a first step, kernel matrices on a fixed set of input points are l...
Anton Schwaighofer, Volker Tresp, Kai Yu
CORR
2006
Springer
130views Education» more  CORR 2006»
14 years 10 months ago
Genetic Programming for Kernel-based Learning with Co-evolving Subsets Selection
Abstract. Support Vector Machines (SVMs) are well-established Machine Learning (ML) algorithms. They rely on the fact that i) linear learning can be formalized as a well-posed opti...
Christian Gagné, Marc Schoenauer, Mich&egra...

Book
778views
16 years 8 months ago
Gaussian Processes for Machine Learning
"Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning...
Carl Edward Rasmussen and Christopher K. I. Willia...
BMCBI
2011
14 years 4 months ago
Statistical learning techniques applied to epidemiology: a simulated case-control comparison study with logistic regression
Background: When investigating covariate interactions and group associations with standard regression analyses, the relationship between the response variable and exposure may be ...
John J. Heine, Walker H. Land Jr., Kathleen M. Ega...
ML
2002
ACM
223views Machine Learning» more  ML 2002»
14 years 9 months ago
Text Categorization with Support Vector Machines. How to Represent Texts in Input Space?
The choice of the kernel function is crucial to most applications of support vector machines. In this paper, however, we show that in the case of text classification, term-frequenc...
Edda Leopold, Jörg Kindermann