In content-based retrieval, relevance feedback (RF) is a noticeable method for reducing the “semantic gap” between the low-level features describing the content and the usually...
Michel Crucianu, Daniel Estevez, Vincent Oria, Jea...
Abstract--We give sublinear-time approximation algorithms for some optimization problems arising in machine learning, such as training linear classifiers and finding minimum enclos...
Kenneth L. Clarkson, Elad Hazan, David P. Woodruff
This paper shows (i) improvements over state-of-the-art local feature recognition systems, (ii) how to formulate principled models for automatic local feature selection in object c...
Abstract - The proposed algorithm in this work provides superresolution for color images by using a learning based technique that utilizes both generative and discriminant approach...
In many real-world classification problems the input contains a large number of potentially irrelevant features. This paper proposes a new Bayesian framework for determining the r...
Yuan (Alan) Qi, Thomas P. Minka, Rosalind W. Picar...