—We present a new algorithm for vertical handover and dynamic network selection, based on a combination of multiattribute utility theory, kernel learning and stochastic gradient ...
Eric van den Berg, Praveen Gopalakrishnan, Byungsu...
In many applications it is desirable to learn from several kernels. "Multiple kernel learning" (MKL) allows the practitioner to optimize over linear combinations of kern...
Kernel summations are a ubiquitous key computational bottleneck in many data analysis methods. In this paper, we attempt to marry, for the first time, the best relevant technique...
Dongryeol Lee, Richard W. Vuduc, Alexander G. Gray
Many unsupervised learning algorithms make use of kernels that rely on the Euclidean distance between two samples. However, the Euclidean distance is optimal for Gaussian distribut...
Karim T. Abou-Moustafa, Mohak Shah, Fernando De la...
In this paper we address the problem of classifying images, by exploiting global features that describe color and illumination properties, and by using the statistical learning pa...