The paper presents a kernel for learning from ordered hypergraphs, a formalization that captures relational data as used in Inductive Logic Programming (ILP). The kernel generaliz...
The Support Vector Machine (SVM) is an acknowledged powerful tool for building classifiers, but it lacks flexibility, in the sense that the kernel is chosen prior to learning. Mul...
Marie Szafranski, Yves Grandvalet, Alain Rakotomam...
This paper proposes a novel approach for directly tuning the gaussian kernel matrix for one class learning. The popular gaussian kernel includes a free parameter, σ, that requires...
Paul F. Evangelista, Mark J. Embrechts, Boleslaw K...
In Kernel Fisher discriminant analysis (KFDA), we carry out Fisher linear discriminant analysis in a high dimensional feature space defined implicitly by a kernel. The performance...
Seung-Jean Kim, Alessandro Magnani, Stephen P. Boy...
Kernel methods have been successfully applied to many machine learning problems. Nevertheless, since the performance of kernel methods depends heavily on the type of kernels being...
Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Jinfeng Y...