Sciweavers

993 search results - page 50 / 199
» Learning RoboCup-Keepaway with Kernels
Sort
View
ICML
2007
IEEE
15 years 10 months ago
Dimensionality reduction and generalization
In this paper we investigate the regularization property of Kernel Principal Component Analysis (KPCA), by studying its application as a preprocessing step to supervised learning ...
Sofia Mosci, Lorenzo Rosasco, Alessandro Verri
ICML
2009
IEEE
15 years 10 months ago
Geometry-aware metric learning
In this paper, we introduce a generic framework for semi-supervised kernel learning. Given pairwise (dis-)similarity constraints, we learn a kernel matrix over the data that respe...
Zhengdong Lu, Prateek Jain, Inderjit S. Dhillon
75
Voted
NIPS
2004
14 years 11 months ago
Kernels for Multi--task Learning
This paper provides a foundation for multi
Charles A. Micchelli, Massimiliano Pontil
CVPR
2008
IEEE
15 years 11 months ago
Parameterized Kernel Principal Component Analysis: Theory and applications to supervised and unsupervised image alignment
Parameterized Appearance Models (PAMs) (e.g. eigentracking, active appearance models, morphable models) use Principal Component Analysis (PCA) to model the shape and appearance of...
Fernando De la Torre, Minh Hoai Nguyen
ICML
2007
IEEE
15 years 10 months ago
Regression on manifolds using kernel dimension reduction
We study the problem of discovering a manifold that best preserves information relevant to a nonlinear regression. Solving this problem involves extending and uniting two threads ...
Jens Nilsson, Fei Sha, Michael I. Jordan