Transfer learning allows knowledge to be extracted from auxiliary domains and be used to enhance learning in a target domain. For transfer learning to be successful, it is critica...
A Hilbert space embedding for probability measures has recently been proposed, with applications including dimensionality reduction, homogeneity testing and independence testing. ...
Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fu...
Abstract— The generalised linear model (GLM) is the standard approach in classical statistics for regression tasks where it is appropriate to measure the data misfit using a lik...
Gavin C. Cawley, Gareth J. Janacek, Nicola L. C. T...
We derive a family of kernels on dynamical systems by applying the Binet-Cauchy theorem to trajectories of states. Our derivation provides a unifying framework for all kernels on d...
S. V. N. Vishwanathan, Alexander J. Smola, Ren&eac...
Presentation of the exponential families, of the mixtures of such distributions and how to learn it. We then present algorithms to simplify mixture model, using Kullback-Leibler di...