We address the problem of denoising for image patches. The approach taken is based on Bayesian modeling of sparse representations, which takes into account dependencies between th...
We develop nonparametric Bayesian models for multiscale representations of images depicting natural scene categories. Individual features or wavelet coefficients are marginally de...
Jyri J. Kivinen, Erik B. Sudderth, Michael I. Jord...
Manydata mining algorithms developed recently are based on inductive learning methods. Very few are based on similarity-based learning. However, similarity-based learning accrues ...
Background: Independently derived expression profiles of the same biological condition often have few genes in common. In this study, we created populations of expression profiles...
Michael Gormley, William Dampier, Adam Ertel, Bilg...
In this paper, we present a novel feature extraction framework, called learning by propagability. The whole learning process is driven by the philosophy that the data labels and o...
Bingbing Ni, Shuicheng Yan, Ashraf A. Kassim, Loon...