We investigate here concept learning from incomplete examples. Our first purpose is to discuss to what extent logical learning settings have to be modified in order to cope with da...
Abstract-- Many applications are driven by evolving data -patterns in web traffic, program execution traces, network event logs, etc., are often non-stationary. Building prediction...
Shixi Chen, Haixun Wang, Shuigeng Zhou, Philip S. ...
We study the learnability of sets in Rn under the Gaussian distribution, taking Gaussian surface area as the “complexity measure” of the sets being learned. Let CS denote the ...
Adam R. Klivans, Ryan O'Donnell, Rocco A. Servedio
This paper presents a method to induce relational concepts with neural networks using the inductive logic programming system LINUS. Some first-order inductive learning tasks taken...
Rodrigo Basilio, Gerson Zaverucha, Artur S. d'Avil...
Concept learning in content-based image retrieval (CBIR) systems is a challenging task. This paper presents an active concept learning approach based on mixture model to deal with...