Inspired by the hierarchical hidden Markov models (HHMM), we present the hierarchical semi-Markov conditional random field (HSCRF), a generalisation of embedded undirected Markov ...
Tran The Truyen, Dinh Q. Phung, Hung Hai Bui, Svet...
We present a mixture model whose components are Restricted Boltzmann Machines (RBMs). This possibility has not been considered before because computing the partition function of a...
In this paper we present a novel scheme for unstructured audio scene classification that possesses three highly desirable and powerful features: autonomy, scalability, and robust...
Julian Ramos, Sajid M. Siddiqi, Artur Dubrawski, G...
Abstract. Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate scientists to simulate and predict climate. Given temperature predic...
We consider the problem of learning Gaussian multiresolution (MR) models in which data are only available at the finest scale and the coarser, hidden variables serve both to captu...
Myung Jin Choi, Venkat Chandrasekaran, Alan S. Wil...