We examine the problem of evaluating a policy in the contextual bandit setting using only observations collected during the execution of another policy. We show that policy evalua...
John Langford, Alexander L. Strehl, Jennifer Wortm...
Reinforcement learning (RL) was originally proposed as a framework to allow agents to learn in an online fashion as they interact with their environment. Existing RL algorithms co...
Pascal Poupart, Nikos A. Vlassis, Jesse Hoey, Kevi...
—Reinforcement learning is the scheme for unsupervised learning in which robots are expected to acquire behavior skills through self-explorations based on reward signals. There a...
Hiroaki Arie, Tetsuya Ogata, Jun Tani, Shigeki Sug...
Designing distributed controllers for self-reconfiguring modular robots has been consistently challenging. We have developed a reinforcement learning approach which can be used bo...
We introduce relational temporal difference learning as an effective approach to solving multi-agent Markov decision problems with large state spaces. Our algorithm uses temporal ...