The ability to determine what day-to-day activity (such as cooking pasta, taking a pill, or watching a video) a person is performing is of interest in many application domains. A ...
Mike Perkowitz, Matthai Philipose, Kenneth P. Fish...
We analyze the amount of information needed to carry out model-based recognition tasks, in the context of a probabilistic data collection model, and independently of the recogniti...
A probabilistic learning model for vague queries and missing or imprecise information in databases is described. Instead of retrieving only a set of answers, our approach yields a...
Transfer learning addresses the problem of how to leverage knowledge acquired in a source domain to improve the accuracy and speed of learning in a related target domain. This pap...
Lilyana Mihalkova, Tuyen N. Huynh, Raymond J. Moon...
Abstract. Learning event models from videos has applications ranging from abnormal event detection to content based video retrieval. Relational learning techniques such as Inductiv...
Krishna S. R. Dubba, Anthony G. Cohn, David C. Hog...