Machine-learning algorithms are employed in a wide variety of applications to extract useful information from data sets, and many are known to suffer from superlinear increases in ...
Karthik Nagarajan, Brian Holland, Alan D. George, ...
Abstract. During development, processor architectures can be tuned and configured by many different parameters. For benchmarking, automatic design space explorations (DSEs) with h...
Ralf Jahr, Horia Calborean, Lucian Vintan, Theo Un...
Previous algorithms for learning lexicographic preference models (LPMs) produce a "best guess" LPM that is consistent with the observations. Our approach is more democra...
Fusun Yaman, Thomas J. Walsh, Michael L. Littman, ...
Recent developments in E-Learning systems aim at providing a better support for didactics-aware learning scenarios. Typically, in order to provide that support the number and comp...
An ensemble of classifiers based algorithm, Learn++, was recently introduced that is capable of incrementally learning new information from datasets that consecutively become avail...
Michael Muhlbaier, Apostolos Topalis, Robi Polikar