Learning Classifier Systems (LCSs), such as the accuracy-based XCS, evolve distributed problem solutions represented by a population of rules. During evolution, features are speci...
Martin V. Butz, Martin Pelikan, Xavier Llorà...
Naive Bayesian classifiers work well in data sets with independent attributes. However, they perform poorly when the attributes are dependent or when there are one or more irrelev...
Miguel A. Palacios-Alonso, Carlos A. Brizuela, Lui...
We consider the problem of selecting an optimal set of sensors, as determined, for example, by the predictive accuracy of the resulting sensor network. Given an underlying metric ...
Roman Garnett, Michael A. Osborne, Stephen J. Robe...
Background: Biological networks offer us a new way to investigate the interactions among different components and address the biological system as a whole. In this paper, a revers...
Dong-Chul Kim, Xiaoyu Wang, Chin-Rang Yang, Jean G...
Abstract. A major challenge in pervasive computing is to learn activity patterns, such as bathing and cleaning from sensor data. Typical sensor deployments generate sparse datasets...