In this paper, we present an information-theoretic approach to learning a Mahalanobis distance function. We formulate the problem as that of minimizing the differential relative e...
Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit ...
Quite a bit is known about minimizing different kinds of regret in experts problems, and how these regret types relate to types of equilibria in the multiagent setting of repeated...
This paper presents a semi-supervised learning (SSL) approach to find similarities of images using statistics of local matches. SSL algorithms are well known for leveraging a larg...
Metric and kernel learning arise in several machine learning applications. However, most existing metric learning algorithms are limited to learning metrics over low-dimensional d...
Prateek Jain, Brian Kulis, Jason V. Davis, Inderji...
As computer vision research considers more object categories and greater variation within object categories, it is clear that larger and more exhaustive datasets are necessary. How...
Brendan Collins, Jia Deng, Kai Li, Fei-Fei Li 0002