We address the problem of integrating objects from a source taxonomy into a master taxonomy. This problem is not only currently pervasive on the web, but also important to the eme...
—We introduce a new general framework for the recognition of complex visual scenes, which is motivated by biology: We describe a hierarchical system that closely follows the orga...
Thomas Serre, Lior Wolf, Stanley M. Bileschi, Maxi...
This paper explores the power and the limitations of weakly supervised categorization. We present a complete framework that starts with the extraction of various local regions of e...
Andreas Opelt, Axel Pinz, Michael Fussenegger, Pet...
We present a latent hierarchical structural learning method for object detection. An object is represented by a mixture of hierarchical tree models where the nodes represent objec...
Leo Zhu, Yuanhao Chen, Antonio Torralba, Alan Yuil...
Object detection remains an important but challenging task in computer vision. We present a method that combines high accuracy with high efficiency. We adopt simplified forms of...