There has been much interest in unsupervised learning of hierarchical generative models such as deep belief networks. Scaling such models to full-sized, high-dimensional images re...
Honglak Lee, Roger Grosse, Rajesh Ranganath, Andre...
— Automatically synthesizing behaviors for robots with articulated bodies poses a number of challenges beyond those encountered when generating behaviors for simpler agents. One ...
We introduce a new metaphor for learning spatial relations--the 3D puzzle. With this metaphor users learn spatial relations by assembling a geometric model themselves. For this pu...
Bernhard Preim, Felix Ritter, Oliver Deussen, Thom...
We present a hierarchical model that learns image decompositions via alternating layers of convolutional sparse coding and max pooling. When trained on natural images, the layers ...
—This paper introduces a new approach to develop robots that can learn general affordance relations from their experiences. Our approach is a part of larger efforts to develop a ...
Erdem Erdemir, Carl B. Frankel, Kazuhiko Kawamura,...