Sciweavers

219 search results - page 14 / 44
» Learning the Dimensionality of Hidden Variables
Sort
View
AAAI
2008
14 years 12 months ago
Hidden Dynamic Probabilistic Models for Labeling Sequence Data
We propose a new discriminative framework, namely Hidden Dynamic Conditional Random Fields (HDCRFs), for building probabilistic models which can capture both internal and external...
Xiaofeng Yu, Wai Lam
KDD
1998
ACM
190views Data Mining» more  KDD 1998»
15 years 1 months ago
Time Series Forecasting from High-Dimensional Data with Multiple Adaptive Layers
This paper describes our work in learning online models that forecast real-valued variables in a high-dimensional space. A 3GB database was collected by sampling 421 real-valued s...
R. Bharat Rao, Scott Rickard, Frans Coetzee
TSP
2010
14 years 4 months ago
Gaussian multiresolution models: exploiting sparse Markov and covariance structure
We consider the problem of learning Gaussian multiresolution (MR) models in which data are only available at the finest scale and the coarser, hidden variables serve both to captu...
Myung Jin Choi, Venkat Chandrasekaran, Alan S. Wil...
ICML
2005
IEEE
15 years 10 months ago
Expectation maximization algorithms for conditional likelihoods
We introduce an expectation maximizationtype (EM) algorithm for maximum likelihood optimization of conditional densities. It is applicable to hidden variable models where the dist...
Jarkko Salojärvi, Kai Puolamäki, Samuel ...
NIPS
2007
14 years 11 months ago
People Tracking with the Laplacian Eigenmaps Latent Variable Model
Reliably recovering 3D human pose from monocular video requires models that bias the estimates towards typical human poses and motions. We construct priors for people tracking usi...
Zhengdong Lu, Miguel Á. Carreira-Perpi&ntil...