Sciweavers

219 search results - page 17 / 44
» Learning the Dimensionality of Hidden Variables
Sort
View
JMLR
2012
12 years 12 months ago
Age-Layered Expectation Maximization for Parameter Learning in Bayesian Networks
The expectation maximization (EM) algorithm is a popular algorithm for parameter estimation in models with hidden variables. However, the algorithm has several non-trivial limitat...
Avneesh Singh Saluja, Priya Krishnan Sundararajan,...
AAAI
2010
14 years 10 months ago
A Two-Dimensional Topic-Aspect Model for Discovering Multi-Faceted Topics
This paper presents the Topic-Aspect Model (TAM), a Bayesian mixture model which jointly discovers topics and aspects. We broadly define an aspect of a document as a characteristi...
Michael Paul, Roxana Girju
NIPS
1997
14 years 11 months ago
Learning Human-like Knowledge by Singular Value Decomposition: A Progress Report
Singular value decomposition (SVD) can be viewed as a method for unsupervised training of a network that associates two classes of events reciprocally by linear connections throug...
Thomas K. Landauer, Darrell Laham, Peter W. Foltz
ICML
2008
IEEE
15 years 10 months ago
Dirichlet component analysis: feature extraction for compositional data
We consider feature extraction (dimensionality reduction) for compositional data, where the data vectors are constrained to be positive and constant-sum. In real-world problems, t...
Hua-Yan Wang, Qiang Yang, Hong Qin, Hongbin Zha
85
Voted
ICML
2009
IEEE
15 years 10 months ago
Exploiting sparse Markov and covariance structure in multiresolution models
We consider Gaussian multiresolution (MR) models in which coarser, hidden variables serve to capture statistical dependencies among the finest scale variables. Tree-structured MR ...
Myung Jin Choi, Venkat Chandrasekaran, Alan S. Wil...