Many automated learning procedures lack interpretability, operating effectively as a black box: providing a prediction tool but no explanation of the underlying dynamics that driv...
Background: Sequence-derived structural and physicochemical descriptors have frequently been used in machine learning prediction of protein functional families, thus there is a ne...
Serene A. K. Ong, Hong Huang Lin, Yu Zong Chen, Ze...
Motion estimation for applications where appearance undergoes complex changes is challenging due to lack of an appropriate similarity function. In this paper, we propose to learn ...
Shaohua Kevin Zhou, Bogdan Georgescu, Dorin Comani...
In recent years, there has been a growing interest in using rich representations such as relational languages for reinforcement learning. However, while expressive languages have ...
Tom Croonenborghs, Jan Ramon, Hendrik Blockeel, Ma...
We study the problem of online learning of multiple tasks in parallel. On each online round, the algorithm receives an instance and makes a prediction for each one of the parallel ...