Sciweavers

99 search results - page 14 / 20
» Learning the kernel via convex optimization
Sort
View
KDD
2007
ACM
276views Data Mining» more  KDD 2007»
15 years 10 months ago
Nonlinear adaptive distance metric learning for clustering
A good distance metric is crucial for many data mining tasks. To learn a metric in the unsupervised setting, most metric learning algorithms project observed data to a lowdimensio...
Jianhui Chen, Zheng Zhao, Jieping Ye, Huan Liu
ICML
2010
IEEE
14 years 10 months ago
Learning Efficiently with Approximate Inference via Dual Losses
Many structured prediction tasks involve complex models where inference is computationally intractable, but where it can be well approximated using a linear programming relaxation...
Ofer Meshi, David Sontag, Tommi Jaakkola, Amir Glo...
JMLR
2011
157views more  JMLR 2011»
14 years 4 months ago
Variable Sparsity Kernel Learning
This paper1 presents novel algorithms and applications for a particular class of mixed-norm regularization based Multiple Kernel Learning (MKL) formulations. The formulations assu...
Jonathan Aflalo, Aharon Ben-Tal, Chiranjib Bhattac...
97
Voted
PR
2010
163views more  PR 2010»
14 years 8 months ago
Optimal feature selection for support vector machines
Selecting relevant features for Support Vector Machine (SVM) classifiers is important for a variety of reasons such as generalization performance, computational efficiency, and ...
Minh Hoai Nguyen, Fernando De la Torre
ICML
2009
IEEE
15 years 10 months ago
A simpler unified analysis of budget perceptrons
The kernel Perceptron is an appealing online learning algorithm that has a drawback: whenever it makes an error it must increase its support set, which slows training and testing ...
Ilya Sutskever