The one-class and cost-sensitive support vector machines (SVMs) are state-of-the-art machine learning methods for estimating density level sets and solving weighted classificatio...
We address the feature selection problem for hidden Markov models (HMMs) in sequence classification. Temporal correlation in sequences often causes difficulty in applying featur...
Pei Yin, Irfan A. Essa, Thad Starner, James M. Reh...
Discovering a representation that allows auditory data to be parsimoniously represented is useful for many machine learning and signal processing tasks. Such a representation can ...
The Support Vector Machine (SVM) methodology is an effective, supervised, machine learning method that gives stateof-the-art performance for brain state classification from funct...
Yongxin Taylor Xi, Hao Xu, Ray Lee, Peter J. Ramad...
Enriching speech recognition output with sentence boundaries improves its human readability and enables further processing by downstream language processing modules. We have const...
Yang Liu, Nitesh V. Chawla, Mary P. Harper, Elizab...