Abstract. Q-learning can be used to learn a control policy that maximises a scalar reward through interaction with the environment. Qlearning is commonly applied to problems with d...
Chris Gaskett, David Wettergreen, Alexander Zelins...
Learning in real-world domains often requires to deal with continuous state and action spaces. Although many solutions have been proposed to apply Reinforcement Learning algorithm...
Alessandro Lazaric, Marcello Restelli, Andrea Bona...
The aim of this paper is to address recognition of natural human actions in diverse and realistic video settings. This challenging but important subject has mostly been ignored in...
Ivan Laptev, Marcin Marszalek, Cordelia Schmid, Be...
AI planning requires the definition of action models using a formal action and plan description language, such as the standard Planning Domain Definition Language (PDDL), as inp...
An agent must acquire internal representation appropriate for its task, environment, sensors. As a learning algorithm, reinforcement learning is often utilized to acquire the rela...