Sciweavers

170 search results - page 10 / 34
» Learning to play Tetris applying reinforcement learning meth...
Sort
View
AI
2002
Springer
14 years 9 months ago
Multiagent learning using a variable learning rate
Learning to act in a multiagent environment is a difficult problem since the normal definition of an optimal policy no longer applies. The optimal policy at any moment depends on ...
Michael H. Bowling, Manuela M. Veloso
ICML
2006
IEEE
15 years 10 months ago
Relational temporal difference learning
We introduce relational temporal difference learning as an effective approach to solving multi-agent Markov decision problems with large state spaces. Our algorithm uses temporal ...
Nima Asgharbeygi, David J. Stracuzzi, Pat Langley
ICML
2001
IEEE
15 years 10 months ago
Continuous-Time Hierarchical Reinforcement Learning
Hierarchical reinforcement learning (RL) is a general framework which studies how to exploit the structure of actions and tasks to accelerate policy learning in large domains. Pri...
Mohammad Ghavamzadeh, Sridhar Mahadevan
72
Voted
IJCAI
2007
14 years 11 months ago
Utile Distinctions for Relational Reinforcement Learning
We introduce an approach to autonomously creating state space abstractions for an online reinforcement learning agent using a relational representation. Our approach uses a tree-b...
William Dabney, Amy McGovern
GECON
2008
Springer
134views Business» more  GECON 2008»
14 years 10 months ago
Rational Bidding Using Reinforcement Learning
The application of autonomous agents by the provisioning and usage of computational resources is an attractive research field. Various methods and technologies in the area of arti...
Nikolay Borissov, Arun Anandasivam, Niklas Wirstr&...