We present a novel graph ranking model to extract a diverse set of answers for complex questions via random walks over a negative-edge graph. We assign a negative sign to edge weig...
This paper is concerned with the generalization ability of learning to rank algorithms for information retrieval (IR). We point out that the key for addressing the learning proble...
Yanyan Lan, Tie-Yan Liu, Tao Qin, Zhiming Ma, Hang...
In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why-questions. We use TF-IDF together with a set of 36 linguistically motivate...
Suzan Verberne, Hans van Halteren, Daphne Theijsse...