Interactively learning from a small sample of unlabeled examples is an enormously challenging task, one that often arises in vision applications. Relevance feedback and more recen...
ShyamSundar Rajaram, Charlie K. Dagli, Nemanja Pet...
Abstract. We present an approach to increasing the effectiveness of rankedoutput retrieval systems that relies on graphical display and user manipulation of “views” of retrieva...
We consider the problem of learning to rank relevant and novel documents so as to directly maximize a performance metric called Expected Global Utility (EGU), which has several de...
This paper is concerned with the generalization ability of learning to rank algorithms for information retrieval (IR). We point out that the key for addressing the learning proble...
Yanyan Lan, Tie-Yan Liu, Tao Qin, Zhiming Ma, Hang...
Learning to rank is a new statistical learning technology on creating a ranking model for sorting objects. The technology has been successfully applied to web search, and is becom...
Tao Qin, Tie-Yan Liu, Xu-Dong Zhang, De-Sheng Wang...