This work proposes a new approach to the retrieval of images from text queries. Contrasting with previous work, this method relies on a discriminative model: the parameters are sel...
In information retrieval, relevance of documents with respect to queries is usually judged by humans, and used in evaluation and/or learning of ranking functions. Previous work ha...
Jingfang Xu, Chuanliang Chen, Gu Xu, Hang Li, Elbi...
In Content-based Image Retrieval (CBIR), accurately ranking the returned images is of paramount importance, since users consider mostly the topmost results. The typical ranking st...
Fabio F. Faria, Adriano Veloso, Humberto Mossri de...
In this article we present Supervised Semantic Indexing (SSI) which defines a class of nonlinear (quadratic) models that are discriminatively trained to directly map from the word...
Bing Bai, Jason Weston, David Grangier, Ronan Coll...
We present a new approach to automatic summarization based on neural nets, called NetSum. We extract a set of features from each sentence that helps identify its importance in the...
Krysta Marie Svore, Lucy Vanderwende, Christopher ...