We present a new method for regularized convex optimization and analyze it under both online and stochastic optimization settings. In addition to unifying previously known firstor...
John Duchi, Shai Shalev-Shwartz, Yoram Singer, Amb...
The paper is concerned with learning to rank, which is to construct a model or a function for ranking objects. Learning to rank is useful for document retrieval, collaborative fil...
Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, Han...
The paper is concerned with applying learning to rank to document retrieval. Ranking SVM is a typical method of learning to rank. We point out that there are two factors one must ...
Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Hua...
Tag recommendation is the task of predicting a personalized list of tags for a user given an item. This is important for many websites with tagging capabilities like last.fm or de...
In this paper, we present an AUC (i.e., the Area Under the Curve of Receiver Operating Characteristics (ROC)) maximization based learning algorithm to design the classifier for ma...